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Abstract

This paper discusses the application of liquid state methods for the molecular modeling of polymeric liquids at solid surfaces. The

techniques of integral equation theory, density functional theory, and computer simulation are described and used to investigate the density

pro®les of polymer melts at smooth surfaces. It is shown that an excellent description of the surface behaviour of polymers can be obtained

with only modest computational effort. In particular, the density functional theory is in quantitative agreement with simulation results for a

wide range of conditions. # 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

The behaviour of polymers near surfaces is of crucial

importance in many practical applications [1]. The obvious

examples are in lubrication, adhesion, and coatings where

the ®nal product contains polymers at a surface. Polymer

surface behaviour is also important in material fabrication.

For example, the ®nish of an extrudate can depend strongly

on the interactions between the polymer molecules and the

extruder die. Perhaps less obvious is the importance of

polymers in the stability of colloidal dispersions [2]. The

addition of polymers to colloidal suspensions can either

enhance or decrease the tendency of the particles to ¯occu-

late depending on the polymer induced forces between the

particles. These forces can be qualitatively different depend-

ing on the degree of polymer adsorption, the ionization of

the polymer (in the case of polyelectrolytes), and molecular

architecture (e.g. branching). For these reasons and more,

the behaviour of polymers at surfaces has been an area of

active research for many decades.

It is widely accepted that in most of the applications

mentioned above the behaviour of the polymer molecules

within a few nanometers (or even Angstroms) of the surface

plays an important role. Advances in experimental techni-

ques have allowed one to probe these systems on molecular

lengthscales [3] and this has spurred theoretical research in

this area. In this paper I describe techniques for the mole-

cular modeling of polymers at surfaces. I focus on equili-

brium static properties and discuss the implementation

computer simulation and theoretical methods to describe

the density pro®les of polymers at surfaces.

The simplest problem concerning the surface behaviour

of polymers is the structure of the liquid at a smooth solid

surface. Computer simulations of polymers at surfaces have

been popular [4±8] but, because they are computationally

intensive, have been restricted to rather simple models of

polymers. Liquid state theories for this problem include

density functional theories [9±15] and integral equations

[16,17]. In the integral equation theory the properties of a

polymer ¯uid at a surface are obtained from those of a

mixture of polymers and spheres, in the limit as the spheres

become in®nitely dilute and in®nitely large [16]. For dense

hard-chain polymer melts this theory is convenient and very

accurate, but has some severe de®ciencies in some other

cases [14]. In the density functional theory [13±15] an

approximate expression is used for the free energy of the

¯uid as a functional of the density pro®le at a surface. This

functional is then minimized to obtain the density pro®le.

The density functional theory is much more accurate than

the integral equation theory but suffers from two disadvan-

tages: it is computationally more intensive, requiring several

single molecule simulations for each state point of interest,

and it is more dif®cult to obtain quantities such as the

solvation force between surfaces. With modest computa-

tional effort, however, accurate results for the surface prop-

erties of polymers can be obtained. In this paper, I describe

integral equation and density functional theories, and com-

pare these to computer simulations for hard chains at hard

walls. The rest of this paper is organized as follows: Sec-

tion 2 describes integral equation theories, Section 3
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describes density functional theories, and Section 4 com-

pares results for the density pro®les obtained from the

theories to computer simulations.

2. Integral equation theory

2.1. Uniform fluids

A quantity of central importance in the study of uniform

liquids is the pair correlation function, g(r), which is the

probability (relative to an ideal gas) of ®nding a particle at

position r given that there is a particle at the origin. All other

structural and thermodynamic properties can be obtained

from a knowledge of g(r). The calculation of g(r) for various

¯uids is one of the long-standing problems in liquid state

theory and several accurate approaches exist. These theories

can also be used to obtain the density pro®le of a ¯uid at a

surface.

The starting point is the Ornstein±Zernike (OZ) equation

which, for a one-component system of liquids interacting

via spherically symmetric potentials (e.g. Argon), is [18]

h�r� � c�r� � �
Z

dr0c�r0�h�jrÿ r0j�; (1)

where � is the number density of the ¯uid, h(r)�g(r)ÿ1 is

the total correlation function, and c(r) is the direct correla-

tion function, de®ned via Eq. (1). In Fourier space the OZ

equation may be written as:

ĥ�k� � ĉ�k� � �ĉ�k�ĥ�k�; (2)

where the three dimensional Fourier transform is de®ned via

ĥ�k� � 4�

k

Z1
0

r sin�kr�h�r�dr: (3)

Eq. (1) cannot be solved by itself because it contains two

unknown functions h(r) and c(r). To solve for g(r) one

therefore requires another equation, commonly referred

to as a `̀ closure'' relation. A popular closure approximation

is the Percus±Yevick (PY) approximation [18]:

c�r� � �1ÿ e�u�r��g�r�; (4)

where ��1/kBT, kB is Boltzmann's constant, T is the

temperature, and u(r) is the interaction potential. For hard

sphere liquids the PY closure is particularly simple:

g�r� � 0; r < �; (5)

c�r� � 0; r > �; (6)

where � is the hard sphere diameter. The PY closure is

quantitatively very accurate for the pair correlation function

and equation of state of hard sphere liquids (when compared

to simulations).

If each polymer is modeled as being composed of N beads

(or sites) and the interaction potential between polymers can

be written as the sum of site-site interactions, then simple

generalizations of the OZ equation to polymers are possible.

One approach is the polymer reference interaction site

model (PRISM) theory [19] (based on the RISM theory

[20]) which results in one non-linear integral equation

given by

ĥ�k� � !̂�k�ĉ�k�!̂�k� � �!̂�k�ĉ�k�ĥ�k�; (7)

ĥ�k� � !̂�k�ĉ�k�Ŝ�k�; (8)

where � is the number density of polymer beads (not

chains), !̂�k� is the single chain structure factor, h(r) and

c(r) are the total and direct correlation functions, respec-

tively, averaged over all the beads on the polymers, and

Ŝ�k� � !̂�k� � �ĥ�k� is the static structure factor. The single

chain structure factor may be obtained from the intramo-

lecular correlations via

!�r� � 1

N

XN

i�1

XN

j�1

!ij�r� (9)

where !ij(r) is the probability that beads i and j on the same

chain are a distance r apart, and N is the number of beads (or

sites) on the chains. In the simplest implementation of the

PRISM theory, !̂�k� is assumed to be known and the

standard closure approximations used for simple liquids,

e.g. PY, and employed without change.

In the PRISM approach, information regarding chain

conformations and local chemistry (e.g. bond angle and

bond length constraints, stiffness, and branching) is input

through the single chain structure factor, !̂�k�. In general

this function depends on the pair correlations and must be

calculated self-consistently with g(r). In most implementa-

tions of the theory, however, !̂�k� is assumed to be known a

priori. This can be justi®ed by invoking the Flory ideality

hypothesis, which states that chains in a melt behave

essentially like ideal chains because intramolecular inter-

actions exactly counteract intermolecular interactions.

The OZ (or PRISM) equation with closure relation can be

solved using a Picard iteration procedure. One starts with a

guess for the function 
(r)�h(r)ÿc(r), either 
(r)�0 or the

value of 
(r) from some condition close to the condition of

interest. Using the closure relation, c(r) is then obtained

from 
(r). With the PY closure, for example,

c�r� � �eÿ�u�r� ÿ 1��1� 
�r��: (10)

ĉ�k� is then evaluated numerically and the next guess for


(r) is obtained from the OZ equation followed by an

inverse Fourier transform of 
̂�k�: For numerical conveni-

ence the functions are discretized and the Fourier transforms

are performed using the fast Fourier transform (FFT) algo-

rithm. It is necessary to work with the function 
(r) because

it is not convenient to perform a numerical Fourier inversion

of either h(r) or c(r) because ĥ�k� and ĉ�k� are long-ranged

(in hard sphere liquids, for example, h(r) and c(r) contain

step functions).
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2.2. Polymeric fluids at a surface

Integral equations can also be used to treat non-uniform

¯uids, such as ¯uids at surfaces. One starts with a binary

mixture of spheres and polymers and takes the limit as the

spheres become in®nitely dilute and in®nitely large [16±22].

The sphere polymer pair correlation function is then simply

related to the density pro®le of the ¯uid. For a binary

mixture of in®nitely dilute spheres and polymers the rele-

vant PRISM equation is [16]

ĥw�k� � Ŝ�k�ĉw�k�; (11)

where hw(r) and cw(r) are the total and direct correlation

functions between the polymer and sphere, and Ŝ�k� is the

static structure factor of the uniform polymer ¯uid discussed

in Section 2.1.

To obtain the PRISM equation for a ¯uid at a surface

Eq. (11) is ®rst transformed to real space using bipolar co-

ordinates, and then the spheres are made in®nitely large. In

this limit, the correlation functions hw and cw become

functions only of the perpendicular distance, z, from the

surface. The resulting equation can then be transformed to

reciprocal space using a one dimensional Fourier transform

given by,

~hw�K� � 1

2�

Z�1
ÿ1

hw�z� exp�iz�dz: (12)

The resulting equation, called the wall-PRISM equation, is

very simple:

ĥw�k� � Ŝ�k�~cw�k�; (13)

which looks just like Eq. (11) except that one-dimensional

rather than three dimensional Fourier transforms are used

for cw and hw. The PY closure is

cw�z� � �1ÿ eÿ���z��gw�z�; (14)

where �(z) is the ¯uid-surface potential (or external ®eld),

and gw(z)�1�hw(z). For a ¯uid between two hard surfaces

(impenetrable to centres of chains sites) located at z�0 and

z�H, the PY closure simpli®es to

gw�z� � 0; z < 0 or z > H; (15)

cw�z� � 0; 0 < z < H; (16)

The density pro®le is given by �(z)��gw(z). The wall-

PRISM equation is solved by ®rst calculation Ŝ�k� (e.g.

using the PRISM theory) and then employing a Picard

iteration procedure for the wall-PRISM equation, similar

to the one described earlier for the PRISM equation.

3. Density functional theory

In density functional theory one starts with an approx-

imation for the grand free energy, 
, as a functional of the

density pro®le. If R denotes the positions of all the N

monomers on a polymer molecule and �M(R) is the mole-

cular density as a function of these positions, then at

equilibrium

�


��M�R� � 0; (17)

and this condition determines the density pro®le.

The functional 
 is related to the Helmholtz free energy

functional, F[�M] via a Legendre transform:


��M�R�� � F��M�R�� �
Z
���R� ÿ ���M�R�dR; (18)

where � is the chemical potential and �(R) is the external

®eld. F[�M] can be expressed as the sum of an (exactly

known) ideal part and excess (Fex) part, i.e.

F��M�R�� � kBT

Z
dR�M�R�� ln �M�R� ÿ 1�

�
Z

dRV�R��M�R� � Fex��M�R��; (19)

where V(R) describes all the intramolecular interactions.

The main approximation in any density functional theory is

the expression for the excess free energy functional.

In simple liquids the density pro®le is a function of only

one position variable, and the free energy functional is much

simpler [18]

F���r�� � kBT

Z
dr��r�� ln��r� ÿ 1� Fex���r��; (20)

where �(r) is the density pro®le. It is the presence of the

V(R) term in the functional for polymers that makes things

complicated.

A simple and successful approximation for the excess

free energy functional is to ®rst assume the functional is

only a functional of the average site density pro®le, denoted

�(r), and then invoke the weighted density approximation

(WDA) [23,24], i.e.,

Fex��M�R�� � Fex���r�� �
Z
��r�f ��p�dr; (21)

where f ���� is the excess (over ideal gas) free energy per site

of the bulk ¯uid evaluated at a site density ���r�,

���r� �
Z
��r0�w�jrÿ r0j�dr0 (22)

is the weighted density, and w(r) is the weighting function,

normalized so that
R

w�r�dr � 1. The function f(�) can be

obtained from an equation of state. The central approxima-

tion is the choice of the weighting function. The most

accurate theory [15] employs the Curtin±Ashcroft recipe

[25] where w(r) is obtained from

ÿkBTĉ�k� � 2f 0���ŵ�k� � �f 00���ŵ2�k�

� 2�f 0���ŵ�k� @ŵ�k�
@�

; (23)

A. Yethiraj / Chemical Engineering Journal 74 (1999) 109±115 111



where primes denote derivatives with respect to density, and

the direct correlation function can be obtained from the

PRISM theory described in the previous section. Eq. (23) is

derived by forcing the free energy functional to satisfy an

exact relation between the second derivative of the excess

free energy functional and the direct correlation function.

The density functional theory has the structure of a self-

consistent ®eld theory where the density pro®le is obtained

from a simulation of a single chain in the ®eld due to the rest

of the ¯uid and the surface. A formal minimization of 

gives

�


��M�R� �
�F

��M�R� � ��R� ÿ � � 0; (24)

which may be written as

�M�R� � exp ÿ�V�R� � ��ÿ ���r� � �
XN

i�1

��ri�
" #

;

(25)

where �(r) is the self-consistent ®eld given by

��r� � �Fex

���r� � f ����r�� �
Z

dr0��r0�w�jrÿ r0j�f0���r0��:
(26)

If there were no intramolecular interactions (such as bond-

ing or excluded volume) then V(R)�0, and the next guess

for the density pro®le can be obtained directly from

Eq. (25). The presence of V(R) necessitates either a

multi-dimensional integration or (more conveniently) a

single chain simulation.

The implementation of the density functional theory

entails the iterative solution of one equation

��r� �
Z

dR
XN

i�1

��rÿ ri�
" #

� exp ÿ�V�R� � ��ÿ ���R� � �
XN

i�1

��ri�
" #

;

(27)

with l(r) given by Eq. (26). This equation is solved by

discretizing the density pro®le, treating the value of the

density at each point as an independent variable, and then

employing a Newton±Raphson procedure (described pre-

viously [13]) to solve for the density pro®le. This sounds

more complicated than it really is, and the procedure

generally converges within 5±10 iterations.

The density functional theory requires, as input, an

equation of state and direct correlation function of the bulk

¯uid. Accurate equations of state are available for freely-

jointed hard chains [26] and fused-hard-sphere chains [15].

The direct correlation function is obtained as follows. The

single chain structure factor is ®rst calculated, using the

Koyama distribution (as extended to continuous-space

chains by Honnell et al. [27]) for the freely-jointed tan-

gent-sphere chains and using single chain simulations of

self-avoiding walks for the fused-hard-sphere chains. The

direct correlation function is then obtained from the PRISM

theory with the PY closure.

4. Monte carlo simulations and test of theories

4.1. Monte carlo simulations

Computer simulations of con®ned polymers are generally

performed in the canonical ensemble where the number of

molecules, volume, and temperature are ®xed. The reason

for this is that simulations in the grand canonical (constant

chemical potential) ensemble require the successful inser-

tion of polymer molecules into the ¯uid, and this is inef®-

cient. In addition, Monte Carlo simulations are generally

preferred over molecular dynamics because the intrinsically

slow dynamics of polymer melts makes the latter compu-

tationally more intensive.

Most simulations to date have been performed for poly-

mers con®ned between two parallel smooth surfaces. In this

paper I discuss the case where the surfaces are far enough

apart that a bulk like region is present in the middle region

between the surfaces. The simulation cell itself is a rectan-

gular parallelepiped bounded at z�0 and z�H by hard walls

that are impenetrable to the centres of the sites of the

polymer molecules. Two models of polymers are consid-

ered: Freely-jointed tangent sphere chains and freely-rotat-

ing chains with ®xed bond angles (��109.478) and bond

lengths (l�0.4s). The former is the standard model for

polymers and the latter is a simple model for linear alkanes

where attractive torsional, and bending interactions are

ignored.

The simulation itself proceeds in three phases: initial

con®guration generation, equilibration, and averaging.

Initial con®gurations are created using a growth and equili-

bration algorithm [6]. If NM chains are desired, NM mono-

mers are ®rst inserted into the simulation cell. This is

generally easily done since the chain density is much lower

than the monomer density. The growing process then pro-

ceeds through several cycles. In each cycle an attempt is ®rst

made to move an existing chain (using methods described

below) and then an attempt is made to add a bead to an

existing chain provided it is not fully grown. The process is

continued until all the chains are grown. The equilibration

and averaging phases consist of moving a randomly chosen

and accepting or rejecting the move according to the

Metropolis criterion. For hard chains this means the move

is accepted if there is no overlap with the other chains and

rejected otherwise. After a certain number of attempted

moves (usually between 100 and 1000) the desired proper-

ties (such as the density pro®le) are calculated and added to

a running average. The only difference between the equili-

bration and averaging phase is that the average properties

obtained in the former are not used in calculating the ®nal
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results. The system is considered to be equilibrated if the

density pro®le is symmetric about the mid-point between

the two surfaces.

The important issue in polymer simulations is the selec-

tion of Monte Carlo moves. For the hard chain models

discussed here, a combination of the three following moves

is very successful in evolving the system. The ®rst is

reptation [28], where a bead is detached from one (randomly

chosen) end of the chain at re-attached at the other end. The

second is continuum con®gurational bias (CCB) [29] where

the chain is cut at a particular point and then re-grown in a

biased fashion to try and ®nd empty spaces in the liquid. The

bias is then removed by appropriately modifying the accep-

tance criterion. The third is the move of Dickman and Hall

(DH) [4,6], where one of the end beads (chosen randomly) is

translated, and the rest of the beads are `̀ jiggled'' by a small

amount while making sure bond length or other constraints

are always satis®ed. Generally the three moves are chosen

with equal probability except at high densities, where the

DH move fails and is not used any longer. The CCB and DH

moves contain parameters, such as the maximum displace-

ment of a bead, which can be changed to adjust the

percentage of accepted moves. This is done so as to max-

imize the mean square displacement of the chain. Typically

about 10% of attempted CCB and DH moves are accepted.

4.2. Density profiles of hard chains

The density pro®les of hard chain polymers at surfaces

are governed by a competition between packing and con-

Fig. 1. Comparison of Monte Carlo simulations [7,15] for the density profiles of freely jointed hard chains to (a) integral equation theory and (b) density

functional theory predictions, for N�20 and for various packing fractions (as marked).
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formational entropic effects [4]. A single chain suffers a loss

of con®gurational entropy near the surface, and this pro-

motes a depletion of chain sites near the walls. On the other

hand packing the chains against the surface is a more

ef®cient way to utilize free volume, and this promotes

and enhancement of chains sites near the walls. At low

densities conformational entropic effects dominate, and at

high densities packing entropic effects dominate.

These trends are seen in Fig. 1(a) and (b) which compare

predictions of the integral equation and density functional

theories, respectively, to simulations of freely-jointed tan-

gent sphere hard chains [7] with N�20, H�10s, and for

various packing fractions, �(��rs3/6). The density pro®les

are normalized to the average value in the cell. Both theories

are in qualitative agreement with the simulations and predict

depletion and enhancement effects and the transition from

one behaviour to the other with increasing density. The

integral equation theory tends to overestimate the value of

the density at the surface for low densities and underesti-

mate the value of the density at the surface for high

densities. The density functional theory, on the other hand,

is in excellent quantitative agreement with the simulations at

all distances. Note that even for very dense systems the

density pro®les are relatively ¯at within a few sphere

diameters from the surface.

Similar results are seen for other models of polymers.

Fig. 2(a) and (b) compare the integral equation and density

functional theories, respectively, to computer simulations

for fused-hard-sphere chains at hard walls for N�16, H�10,

and for various reduced densities. (For fused hard sphere

chains the volume per sphere is roughly 0.28s3 and the

packing fraction is therefore ��0.28rs3.) The qualitative

Fig. 2. Comparison of Monte Carlo simulations [15] for the density profiles of fused-hard-sphere freely rotating chains to (a) integral equation theory and (b)

density functional theory predictions, for N�16 and for various reduced densities (as marked).
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trends are similar to what was seen for the freely-jointed

hard chains in Fig. 1. The integral equation theory is in

qualitative agreement with the simulations but is quantita-

tively not very accurate. The density functional theory, on

the other hand, is in excellent quantitative agreement with

the simulations for all densities and at all distances.

Although the density functional theory is in much better

agreement with the simulations it has some disadvantages

that must be considered. For one, the theory requires as

input an equation of state for the bulk ¯uid, and for another it

requires several single chain simulations for each state

point. The integral equation theory does not suffer from

these drawbacks: it is simple to use and may be considered

an ab initio technique. One can conclude therefore that the

integral equation theory is well suited to obtaining a quick

but rough estimate of the density pro®les, but for an accurate

description one has to go to the more complicated density

functional theory.

5. Summary

The surface behaviour of polymers is of considerable

practical and scienti®c importance. In this paper I have

shown that the techniques of computer simulation and liquid

state theory can be effectively used to tackle polymeric

problems. The implementation of these approaches is more

computationally demanding than in simple liquids but the

availability of fast computers makes this less of a problem.

For example, I have described a density functional theory

for polymers that is extremely accurate for the density

pro®les of polymers at surfaces, about as accurate as similar

theories are for hard spheres at surfaces. The quantitative

accuracy of density functional theory is signi®cant because

several other features, such as the effect of polymer archi-

tecture on the surface forces, are more conveniently inves-

tigated using this method. This is important because

computer simulations because simulations of these complex

models are almost prohibitively expensive. Extensions of

these methods to study polar and charged chains are also

possible and are under investigation.
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